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As climate change shifts marine species distribution and abundance worldwide, projecting local changes over decadal scales may be an adaptive
strategy for managers and industry. In Iceland, one of the top fish-producing nations globally, long-term monitoring enables model simulations of
groundfish species habitat distribution. We used generalized additive models to characterize suitable thermal habitat for  fish species in Iceland’s
waters. We projected changes in suitable thermal habitat by midcentury with an ensemble of five general circulation models from the Coupled
Model Intercomparison Program  (CMIP) and NOAA (CM.) and two scenarios (SSP -. and SSP -.). We found a general northward
shift in suitable thermal habitat distribution, with variable regional dynamics among species. Species thermal bias index was a weak predictor
of projected thermal habitat change, with warmer-water species more likely to see increases in thermal habitat and southern warm-edge range
expansions. While these results isolate the effects of future changes in temperature, providing an indication of suitable thermal habitat, low
model explanatory power suggests that additional variables may improve distribution projections. Such projections might serve as guideposts
to inform long-term management decisions about regional and species-specific suitability for Iceland’s fisheries, infrastructure investment, and
risk evaluation under climate change.
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Introduction
Climate change is shifting marine species distribution and abun-
dance worldwide (Parmesan, 2006; Poloczanska et al., 2013). These
shifts are projected to continue as climate change intensifies (Moli-
nos et al., 2016), with complex and unevenly distributed social–
ecological consequences (Sumaila et al., 2011; Golden et al., 2016;
Lam et al., 2016; Pinsky et al., 2018). Alongside the urgent need
for bold action to reduce greenhouse gas emissions is the need for

adaptive management approaches to maintain desired fishery out-
comes under changing and novel conditions. Researchers project
that implementing management that accounts for changes in fish
species productivity and distribution can improve outcomes for
fishery catches and profits under most climate scenarios (Gaines
et al., 2018; Free et al., 2020). For fisheries with adequate scien-
tific and technical capacity, conducting forecasts and incorporating
future climate scenarios into management decisions is a key as-
pect of climate-adaptive management (Pinsky and Mantua, 2014;
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Holsman et al., 2019; Karp et al., 2019; Free et al., 2020). While
seasonal and interannual forecasts may be of most immediate use
for management and industry, climate-scale projections allow man-
agers and practitioners to evaluate risk, plan for future losses or
gains in suitability, and inform longer term decision-making pro-
cesses such as national legislation or international negotiations
(Hobday et al., 2018; Holsman et al., 2019).

In Iceland, the economic and cultural importance of fisheries and
the sophistication of its management and scientific systems mean
that projecting future change in fish stocks could be a key prior-
ity for achieving climate-adaptive fisheries (Kleisner et al., 2021).
Consistently ranking among the top 20 marine fish capture produc-
ing countries worldwide (FAO, 2020), Iceland is located in a highly
productive transition zone between warm Atlantic and cold Polar
currents. The interactions of these currents create high spatial and
temporal oceanographic variability within Iceland’s waters, and the
ecosystem is highly sensitive to their dynamics (Astthorsson et al.,
2007). Environmental conditions have fluctuated over the past cen-
tury in relation to multidecadal oscillations and local atmospheric
dynamics with profound ecological and economic consequences:
Relatively warm periods were associated with fishery booms that
drove the development of Iceland’s commercial fisheries and econ-
omy, and cooler-water periods (in combination with overfishing)
associated with devastating fishery crashes (Ogilvie and Jónsdóttir,
2000; Astthorsson et al., 2007; Valtýsson and Jónsson, 2018).

Recently, a warm anomaly from the mid-1990s to late-2010s
drove substantial changes in fish abundance and distribution
around Iceland, including documentation of new species and in-
creases of warmer-water species (Astthorsson and Palsson, 2006;
Valdimarsson et al., 2012; Valtýsson and Jónsson, 2018). Partic-
ularly notorious was the abrupt expansion of Atlantic mackerel
(Scomber scombrus) into Iceland’s waters (Astthorsson et al., 2012;
Olafsdottir et al., 2019) that quickly became an economic boon for
Iceland, but led to international political conflict over the fishing
of the stock (Spijkers and Boonstra, 2017). Researchers also noted
significant shifts in groundfish distribution and community assem-
blage, with heterogeneous regional trends associated with oceano-
graphic conditions and the influence of coastal fjord systems on
predator–prey dynamics (Stefánsdóttir, 2008; Jónsdóttir et al., 2019;
Stefánsdóttir, 2019).

Given these past temperature-related changes, a logical next
step might be to project how future change might affect fish species
abundance and distribution. Global studies have projected that
Iceland, like other high-latitude countries, could be a climate
“winner,” potentially experiencing increased biodiversity and
fisheries catch potential as warmer waters move fish poleward
(Cheung et al., 2009; Molinos et al., 2016). However, given the
highly local and variable dynamics of Iceland climatic conditions
and differing ecological, economic, and cultural importance of
its fish species, higher resolution projections indicating specific
species and regional dynamics could be more applicable for fish-
eries managers and industry. Campana et al. (2020) used Iceland’s
bottom trawl survey data to model fish habitat and projected that a
uniform 1◦C increase in bottom temperature would drive a general
northward shift in habitat distribution, with significant variation
across species and quadrants of the exclusive economic zone (EEZ).
The authors noted a high level of regional and temporal variation
in past warming trends and warned that future warming is unlikely
to be homogenous nor linear.

Iceland’s fishery managers have collected standardized fish-
eries independent and fisheries dependent data since the 1980s,

allowing for detailed analyses of species abundance and distribu-
tion in relation to environmental conditions that can inform future
projections. These long-term monitoring data are ideal for a com-
mon but data-intensive approach to anticipating regional or global
species distribution shifts: pairing statistical models of species suit-
able habitat with global climate model outputs (Stock et al., 2011).
Given the uncertainty inherent to projecting both the dynamics of
the global climate and the human actions and policies that influ-
ence those dynamics, using an ensemble of climate models across
different scenarios is advised (Morley et al., 2018, 2020). Here, we
use long-term fisheries independent trawl data and an ensemble of
the newest generation of global climate models from the Coupled
Model Intercomparison Project (CMIP6) to project how future cli-
mate change will affect suitable thermal habitat of 51 species in Ice-
land’s waters at a 0.25◦ x 0.25◦ resolution. These spatially explicit
climate projections can more directly inform Iceland’s fishing in-
dustry and fisheries management’s needs for adapting to climate-
driven changes in fish distribution and illustrate to other nations
and regions how these projections might be considered in long-
term climate-adaptive management.

Methods
Projecting future temperature changes in Iceland’s
waters
We used a suite of global climate models to project future ocean
surface and bottom temperatures in Iceland’s waters, including a
high-resolution global climate model (CM2.6 from the National
Oceanic and Atmospheric Administration Geophysical Fluid Dy-
namics Laboratory, NOAA GFDL) and four coarser global climate
models from the CMIP6. Researchers have found that CM2.6 (10-
km ocean resolution) resolves the ocean circulation in the North-
west Atlantic more realistically than coarser models (Saba et al.,
2016). However, this model has a cold bias in sea surface and bot-
tom temperature in Iceland’s waters in the historical period from
1982 to 2012, so we selected the highest resolution CMIP6 models
that have a range of cold and warm biases to complement the higher
resolution CM2.6. These were GFDL CM4 (25-km ocean resolu-
tion) from the NOAA GFDL, USA; CNRM-CM6 (25-km ocean res-
olution) from the Centre National de Recherches Meteorologiques
and Centre Europeen de Recherche et de Formation Avancee en
Calcul Scientifique, France; HadGEM3-GC31 (100-km ocean reso-
lution) from the Met Office Hadley Centre, UK; and IPSL-CM6A-
LR (100-km ocean resolution) from L’Institut Pierre Simon Laplace,
France. We downloaded CMIP6 data using the xarray package (ver-
sion 0.15.1) in Python (version 3.7.6; Hoyer and Hamman, 2017).

The CMIP6 models use future scenario simulations that com-
bine the Representative Concentration Pathways (RCPs) of ra-
diative forcings used in the Intergovernmental Panel on Climate
Change’s Fifth Assessment Report (IPCC AR5) with Shared Socioe-
conomic Pathways (SSPs) of societal development (Eyring et al.,
2016; O’Neill et al., 2017). We examined two future scenarios for the
years 2015–2100: SSP 2-4.5, a “middle of the road” scenario where
countries continue along historical social, economic, and techno-
logical development trajectories as they strive toward sustainable
development goals; and SSP 5-8.5, a “fossil-fueled development”
scenario where accelerated economic growth emphasizes fossil fu-
els (O’Neill et al., 2017). The CM2.6 projects an idealized transient
climate response (1% per year increase in atmospheric CO2) simu-
lation over 80 years, where the last 20 years are comparable to years
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Figure 1. Study region indicating bottom trawl survey points in
spring (circles) and autumn (+). Thin lines indicate  m isobaths
and thick line indicates Iceland’s EEZ.

2061–2080 of SSP 5-8.5. We, thus, focused on this 2061–2080 pe-
riod for our future projections.

We standardized the models using the “delta method,” where
we calculated the difference between each model’s monthly pro-
jections and modelled historical control (mean of 1985–2015), and
then added these deltas to a standard climatology (Anandhi et al.,
2011; Kleisner et al., 2017; Morley et al., 2018). We used a sea surface
temperature (SST) climatology from daily NOAA Optimum Inter-
polated Sea Surface Temperature (OISST) data from 1982 to 2012
and a bottom temperature climatology from the NOAA Greenland–
Iceland–Norwegian Seas Regional Climatology version 2 (GINS RC
v2) from 1985 to 2012 (Seidov et al. 2013). All projections were in-
terpolated to a standard 0.25◦ x 0.25◦grid to match the OISST res-
olution. We ran a monthly SST and bottom temperature hindcast
for the years 2000–2018 using the Mercator Ocean Global Reanal-
ysis (GLORYS) dataset from the Copernicus Marine Environment
Monitoring Service and a projection for the years 2061–2080 for
each the five models and two scenarios on a projection grid of the
2312 0.25◦ cells in Iceland’s EEZ.

Modelling species suitable thermal habitat
The Icelandic Marine and Freshwater Research Institute (MFRI)
conducts annual standardized bottom trawl surveys in the spring
and autumn to inform groundfish stock assessments. The spring
survey has been conducted since 1985 at about 590 fixed stations
covering Iceland’s continental shelf to a depth of 500 m (Sol-
mundsson et al., 2020). The autumn survey, initiated in 1996 and
expanded in 2000, covers about 400 fixed stations that additionally
include deeper waters along the continental slope (400–1500 m;
Campana et al. 2020). Fish lengths and standard weight conver-
sions are used to calculate biomass (kg) per nautical mile. Surface
temperature and bottom temperature are also measured in situ. We
used surveys through March 2020, excluding the autumn survey
before it was expanded in 2000 and 2011 when a labour strike
interrupted the survey, for n = 27524 total survey tows (Figure 1).
We combined the spring and autumn surveys to better account for
the full thermal envelope each species experiences throughout the
year (Kleisner et al., 2017).

We modelled individual species abundance and distribution with
generalized additive models (GAMs), using the mgcv package (ver-
sion 1.8.33) in R (version 4.0.2; Wood, 2011). Because the purpose
of this analysis was to predict suitable thermal habitat, we tested
a limited number of models based on ecological hypotheses and
selected the final model based on predictive performance as mea-
sured by Akaike’s Information Criterion (AIC) and prediction error
in out-of-sample validation (Tredennick et al., 2021). Further, we
did not include model terms that would constrain prediction, such
as year or latitude and longitude. We modelled biomass density (kg
per nautical mile, as calculated by MFRI) of each species as the re-
sponse variable, with a suite of static and dynamic environmental
variables as the predictor variables. We used a Tweedie distribution
on the observations with a log-link function between the predictors
and the response variable and power-parameter 1 < p < 2 estimated
during fitting (Shono 2008).

The predictor variables for the final model included the observed
depth of the trawl survey tow and rugosity as static habitat vari-
ables and five temperature metrics as dynamic environmental vari-
ables. We calculated rugosity as the mean of the absolute differ-
ences in depth of a cell and its eight surrounding cells (the ter-
rain ruggedness index; Wilson et al. 2007). We downloaded gridded
bathymetry data from the NOAA ETOPO1 1 Arc-Minute Global
Relief Model at a 3-minute resolution (0.05◦ x 0.05◦ cells) using the
marmap package (version 1.0.4) in R. We determined that this reso-
lution was appropriate to the spatial scale of ridge and valley bathy-
metric features along Iceland’s shelf, and that models with this reso-
lution performed better than those with 1-minute or 6-minute reso-
lution rugosity. We included in situ surface and bottom temperature
from the survey tows and used GLORYS temperature data to calcu-
late the annual minimum and maximum surface and bottom tem-
perature at each survey point (that is, the minimum or maximum
temperature over the preceding 12 months in the 0.25◦ x 0.25◦ cell
where the tow was conducted), as these annual extremes may also
influence species distribution (Morley et al., 2018). We removed the
annual minimum bottom temperature as a predictor variable be-
cause it was highly correlated with the survey in situ bottom tem-
perature (Spearman’s rho = 0.77) and did not perform as well as in
situ bottom temperature in model selection.

The Tweedie GAM was defined as follows:

Y ∼ TW (μ, σ 2, p)

E (Y ) = μ = g−1(η)

Var (Y ) = σ 2μp

g(μ) = η = intercept + s
(
towdepth

) + s
(
rugosity

) + s (SST )

+ s (BT ) + s (minSST ) + s (maxSST ) + s (maxBT ) ,

where Y is the random variable representing survey tow biomass
in kg per nautical mile, μ is the expected value of Y under the
Tweedie distribution with σ 2 as the dispersion parameter, and p
as the power-parameter with 1 < p <2, and g(.) representing the
log link function, the inverse of which is an exponential. The addi-
tive function s(.) reflects the smoothing basis, namely a thin plate
regression spline, with input values as defined previously with sea
surface temperature denoted as SST and bottom temperature as BT.
A restricted maximum likelihood (REML) approach was used to fit
the models.
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The GLORYS data were available from 1993 to 2018, so we
trained the final model on data from 1993 to 2013 (approximately
75% of the tows, n = 15049 observations) and tested predictions
on the tows from 2014 to 2018 (n = 4710). To assess model perfor-
mance, we calculated AIC and Mean Absolute Error (MAE):

MAE = 1
n

n∑

i = 1

∣∣ fi − yi
∣∣ ,

where fi is the suitable thermal habitat prediction value for survey
tow i, yi is the observed biomass for survey tow i, and n is the total
number of survey tows in the testing data.

We further assessed the predictive performance of a
temperature-based model by comparing the model MAE with
that of a “naïve” model with temperature variables removed (i.e.
just tow depth and rugosity as predictors) for each species. We
considered the temperature-based model unsuitable for predicting
thermal habitat of a species if the ratio of the full model MAE to
naïve model MAE was > 1, and removed two species (dogfish,
Squalus acanthias and twohorn sculpin, Icelus bicornis) from
analysis based on this ratio test. Because the ratio was close to 1 for
several species, we supplemented the ratio test with the Diebold–
Mariano test on model forecasts using the forecast package (version
8.13) in R (Hyndman et al., 2021), with the time-step (h) parameter
set to 1 (see Kleisner et al., 2017). A total of two additional species
(moustache sculpin, Triglops murrayi and roundnose grenadier,
Coryphaenoides rupestris) had a MAE ratio > 1 and a Diebold–
Mariano p-value > 0.05. We, thus, included these species in our
results for completeness but do not discuss them in depth here. We
also provide MAE ratios and Diebold–Mariano test results in the
supplemental information. We report results for 51 demersal fish
species that had been recorded at the species level and had sufficient
observations for the GAM parameters. A table indicating scientific,
common, and Icelandic names for each species is available in the
supplemental information.

Finally, we explored the contribution of temperature variables
to deviance explained in the models by comparing the percent de-
viance explained of the full model and the naïve model. Although,
less relevant to evaluating model predictive power, this analysis was
to aid interpretation of the results and indicate which species may
be most—or least—responsive to temperature. We also explored
the contribution of each individual predictor variable to model
deviance explained by comparing the percent deviance explained
from the full model and a model with that covariate dropped for
each species.

By fitting these models with temperature variables as the only
dynamic predictors, we sought to isolate temperature effects in ex-
ploring distribution and abundance trends due to projected cli-
mate change by mid-century. Both demersal fish habitat and the
projected impacts of climate change in Iceland’s waters are more
complex than changing temperature, and solely temperature-based
models may be insufficient to fully characterize fish species climate
vulnerability (McHenry et al. 2019). Further, these models do not
account for changes in physiology, behaviour, species interactions,
or fishing pressure, all of which could influence species abundance
and distribution in response to changing environmental conditions.
We, therefore, refer to the model outputs and projections as “suit-
able thermal habitat” rather than biomass or distribution, as they
represent potential suitable habitat and species density based on
temperature, with all else held constant (Kleisner et al., 2017; Mor-
ley et al., 2018).

Projecting future suitable thermal habitat
We calculated the amount of available suitable thermal habitat as
the sum of all modelled suitable thermal habitat values in the full
EEZ projection grid (Morley et al., 2018). We compared the me-
dian suitable thermal habitat in the historical period (2000–2018)
with the future period (2061–2080) for each species. Because some
changes were quite large (orders of magnitude), we present log10-
fold change [log (median future suitable thermal habitat/median
historical suitable thermal habitat)] so that relative increases and
decreases can be compared. For rabbitfish (Chimaera monstrosa),
the North Atlantic codling (Lepidion eques), Vahl’s eelpout (Lycodes
gracilis), and the three Sebastes species (Sebastes marinus, Sebastes
mentella, and Sebastes viviparus), large model error at deep depth
values resulted in uninterpretable prediction values in the eastern
edge of the EEZ; for these species we cropped predictions at 1200
m depth and present comparative results on those cropped values.
We calculated the centroid of distribution for each species as mean
latitude and longitude weighted by the modelled suitable thermal
habitat value, and calculated the distance (km) and direction (de-
grees) shifted between the historical and future period with the geo-
sphere package (version 1.5.10) in R (Hijmans, 2019). Additionally,
we calculated the shifts in cold and warm edges of species distri-
butions as the difference in the 5th and 95th respective percentile
latitude of thermal habitat values > 0.05 (Fredston-Hermann et al.,
2020).

We grouped species by three habitat indices outlined in Cam-
pana et al. (2020), based on bottom temperatures and depths from
the trawl surveys. We calculated thermal bias index as the differ-
ence in median biomass-weighted bottom temperature of tows in
which each species was observed and the median bottom tempera-
ture of all survey tows, stenothermal index as the range of 5th and
95th percentiles of those biomass-weighted observed bottom tem-
peratures for each species, and depth index as the biomass-weighted
median observed tow depth for each species. Because the spring
and autumn surveys sample different areas and depths, we calcu-
lated separate index values for each season and took a weighted
mean based on the number of observations in each season. Follow-
ing Campana et al. (2020), we categorized species into warm water
(positive thermal bias), cool water (−3–0◦C thermal bias), and cold
water (< −3◦C thermal bias) niches for visualization and discus-
sion. We tested associations between habitat indices and projected
shifts in total suitable thermal habitat and the shifts in bearing and
distance of centroid of distribution with ordinary least squares re-
gression.

Results
Projected climate change
The projected climate model deltas resulted in a mean increase in
surface temperatures in Iceland’s EEZ of 1.96◦C for SSP 2-4.5 (rang-
ing from 0.76◦C, CNRM to 2.40◦C, MOHC) and 2.40◦C for SSP 5-
8.5 (ranging from 1.00◦C, CM2.6 to 3.40◦C, IPSL) by 2061–2080.
For bottom temperatures, the mean projected increase for 2061–
2080 was 0.06◦C for SSP 2-4.5 (ranging from −1.5◦C, GFDL to
1.21◦C, IPSL) and 0.20◦C for SSP 5-8.5 (ranging from −1.35◦C,
GFDL to 1.47◦C, IPSL) in 2061–2080 (see Supplemental informa-
tion for time series of individual climate model projections). Spa-
tially, surface warming was projected throughout Iceland’s EEZ
and most pronounced in offshore northeast waters for both sce-
narios (Figure 2a). The variation among climate model surface
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(a)

(b)

(c)

(d)

Figure 2. Projected ensemble means (a and c) and standard deviation (b and d) for sea surface and bottom temperature deltas for the years
– for the middle of the road (SSP -.) and fossil-fueled development (SSP -.) scenarios. Thin lines indicate  m isobaths and
thick lines indicate Iceland’s EEZ.

temperature projections was also highest in Iceland’s northern wa-
ters, which likely reflects uncertainty in the mixing dynamics be-
tween Atlantic and polar waters (Figure 2b). Bottom temperature
deltas showed cooling in Iceland’s southern waters beyond the con-
tinental shelf, and concentrated warming along the northern shelf
and east along the Iceland–Faroes ridge in the southeast (Figure 2c).
Variation among models was highest in the east where warming is
most pronounced, as well as offshore southern waters (Figure 2d).

Model performance and temperature variable
contribution to deviance explained
The GAMs explained on average 59% of deviance (SD 20; range 21–
96) across the 51 species. The contribution of temperature variables
to deviance explained (the difference in percent deviance explained
between the full model and naïve model for each species) was mean
22% (SD 12, range 5–55). Temperature variables contributed more
than 30% deviance explained for 12 species: megrim (Lepidorhom-
bus whiffiagonis), Norway pout (Trisopterus esmarkii), Norway had-
dock (S. viviparus), blue ling (Molva dypterygia), grey gurnard (Eu-
trigla gurnardus), ling (Molva molva), monkfish, (Lophius pisca-
torius), silvery pout (Gadiculus argenteus), Vahl’s eelpout, (L. gra-
cilis), whiting (Merlangius merlangus), rabbitfish (C. monstrosa),
and Atlantic poacher (Leptagonus decagonus). A total of five species
had temperature contribute < 10% deviance explained: roundnose
grenadier (C. rupestris), jelly cat (Anarhichas denticulatus), plaice
(Pleuronectes platessa), dab (Limanda limanda), and Atlantic wolff-
ish (Anarhichas lupus). For these species, projections should be in-
terpreted more carefully, and additional non-temperature variables
would be necessary to better characterize distribution. In exam-
ining the contribution of individual variables to percent deviance
explained (the difference in deviance explained between the full
model and a model with that covariate dropped for each species),
depth contributed mean 9%; bottom temperature, minimum sur-
face temperature, and annual maximum bottom temperature con-
tributed mean 1.5–2%; and rugosity, annual maximum surface tem-

perature, and surface temperature contributed approximately mean
1% (Figure 3). Moderate correlation among the predictor variables
(0.2–0.7) impacts these calculations of contribution to deviance ex-
plained, making the grouped temperature contributions likely over-
estimates and the individual variable contributions likely underesti-
mates. We present the values here as context for interpreting the ap-
propriateness of suitable thermal habitat as a proxy for species dis-
tribution, rather than detailed characterization of the role of tem-
perature variables in these models. Full model performance and
variable contribution for all species is available in the supplemental
information.

Projected changes in suitable thermal habitat
Warmer water species were generally projected to see an increase in
suitable thermal habitat in 2061–2080 relative to 2000–2018, while
cold and cool water species were generally projected to see a de-
crease in suitable thermal habitat (Figure 4). While the patterns
were largely similar across the two scenarios, SSP 5-8.5 could incur
more extremes in species suitable thermal habitat increases, with
seventeen species projected to see increased suitable thermal habi-
tat availability in all five climate models in SSP 5-8.5 vs. ten species
for SSP 2-4.5. Only moustache sculpin (T. murrayi) had a different
direction of projected median suitable thermal habitat change be-
tween the two scenarios, with a projected increase in suitable ther-
mal habitat in SSP 2-4.5 and a decrease in SSP 5-8.5 (Figure 4).

Of the three habitat indices, thermal bias was a weak predictor of
change in projected suitable thermal habitat, with the relationship
y = 0.07x + 0.04 (adjusted r2 = 0.17, p < 0.001) for SSP 2-4.5 and
y = 0.10x + 0.09 (adj. r2 = 0.23, p < 0.001) for SSP 5-8.5. Stenother-
mic index and depth index were very weak predictors (adj. r2 < 0.1)
or did not show a significant relationship with projected suitable
thermal habitat change in either scenario (stenothermic index: p =
0.42, 0.12; depth index: p = 0.15, 0.03).

These projected suitable thermal habitat suitability were spa-
tially heterogeneous within Iceland’s waters, with most species
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Figure 3. Variable contributions to percent deviance explained,
calculated as the difference in percent deviance explained between
the full model and a model with that covariate dropped for each
species. Variables are ordered by median contribution to deviance
explained and bolded variables indicate dynamic temperature
variables. SST is sea surface temperature and BT is bottom
temperature.

showing relatively localized increases and/or decreases (Figure 5).
Cod (Gadus morhua), saithe (Pollachius virens), and tusk (Brosme
brosme), all commercialized species, showed increases along Ice-
land’s northern continental shelf and decreases along the southern
coast (Figure 5a). The projected increases suitable thermal habitat
for cod were farther offshore, especially in SSP 5-8.5, while pro-
jected increases for saithe and tusk were more coastal, with pro-
jected decreased thermal habitat suitability at the northern shelf
margins. Norway pout (T. esmarkii), a key prey species, along with
warm-water whiting (M. merlangus) and witch (Glyptocephalus
cynoglossus), showed suitable thermal habitat increases along Ice-
land’s southern and western continental shelf (Figure 5b). A simi-
lar pattern was projected for warm-water monkfish (L. piscatorius),
megrim (L. whiffiagonis), skate (Dipturus batis), fourbeard rock-
ling (Rhinonemus cimbrius), and Norway haddock (S. viviparus),
with additional dynamics along the southeast Iceland–Faroes ridge
(Figure 5c). Cool-water lumpfish (Cyclopterus lumpus) and At-
lantic wolffish (A. lupus) showed inshore suitable thermal habi-
tat decreases, concentrated in the northwest fjords and east coast
for lumpfish and west and northwest coasts for wolffish (Figure
5d). Starry ray (Amblyraja radiata) showed decreases in pro-
jected suitable thermal habitat across Iceland’s shelf while ling
(M. molva) showed increased projected suitable habitat. Haddock
(Melanogrammus aeglefinus) showed southern increases and north-
ern decreases in projected suitable thermal habitat, roughly the op-
posite pattern to cod, saithe, and tusk. Maps indicating projected

suitable thermal habitat changes for all analyzed species and all pro-
jection periods 2021–2100 are available in the supplemental infor-
mation.

Taken together, these projected shifts in species suitable thermal
habitat showed general northward movement. The centroid of suit-
able thermal habitat was projected to shift north for cold- and cool-
water species and more northwest for warm-water species in SSP 2-
4.5 and more northwest for cold-and cool-water species and north
for warm-water species in SSP 5-8.5 (Figure 6). Warm-water species
saw a mean projected shift in centroid of suitable thermal habitat of
73 km in SSP 2-4.5 (SD 52; range 56, GFDL CM4 to 109, HadGEM3-
GC31) and 77 km in SSP 5-8.5 (SD 60, range 64, GFDL CM4 to 115,
HadGEM3-GC31). Cool-water species saw a mean projected cen-
troid shift of 72 km in SSP 2-4.5 (SD 55, range 64, IPSL-CM6A-LR
to 86, HadGEM3-GC31) and 78 km in SSP 5-8.5 (SD 59, range 64,
CM 2.6 to 94, HadGEM3-GC31). Cold-water species saw the largest
mean projected centroid shift of 87 km in SSP 2-4.5 (SD 77, range
58, CNRM-CM6 to 117, GFDL CM4) and 104 km in SSP 5-8.5 (SD
79, range 78, CM 2.6 to 132, HadGEM3-GC31).

The habitat indices were all insignificant or very weak (adjusted
r2 < 0.1) predictors of change in the distance or bearing of the cen-
troid of suitable thermal habitat in both scenarios. Thermal bias in-
dex was a weak predictor of the distance of southern movement of
the warm edge of suitable thermal habitat (y = −0.09x + 0.20, adj.
r2 = 0.15, p < 0.001 for SSP 2-4.5; y = −0.11x + 0.23, adj. r2 = 0.21,
p < 0.001 for SSP 5-8.5), but was a very weak predictor of the dis-
tance of northward movement of the cold edge of suitable thermal
habitat (adj. r2 < 0.1). Stenothermic index and depth index were
very weak predictors (adj. r2 < 0.1) or did not show a significant
relationship with projected shifts in cold or warm edges of suitable
thermal habitat for either scenario.

Discussion
These results corroborate previous projections that future climate
change could result in significant shifts in fish species abundance
and distribution in Iceland’s waters, and further illustrate poten-
tial variability in responses among species and regions. Consistent
with global hypotheses and the analyses of Campana et al. (2020),
our results indicate an overall northward shift in center of suitable
thermal habitat distribution for Iceland’s demersal fish species, with
warmer water species more likely to expand the southern warm
edge of their range. Species thermal bias was a more significant, al-
beit weak, predictor of future suitable thermal habitat change than
stenothermic index or depth preference, results also similar to the
findings of Campana et al. (2020). In general, our analyses suggest
similar trends to those observed during the mid-1990s warming
period (Valtýsson and Jónsson, 2018) could be expected by mid-
century, with many warmer water species likely to experience over-
all increases in suitable thermal habitat in Iceland’s EEZ. However,
these patterns are localized and may be accompanied by regional
decreases. Projected patterns both of warming and of species suit-
able thermal habitat changes were similar across the two scenar-
ios, although the high-CO2 emissions scenario potentially repre-
sents both greater opportunities in increased suitable thermal habi-
tat for warm-water commercial species and greater losses for com-
mercially or culturally important cooler-water species, as well as
more uncertainty in the direction of change for key species includ-
ing cod. Below we discuss potential economic, cultural, and ecolog-
ical consequences of these projected suitable thermal habitat shifts,
as well as caveats.
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Figure 4. Projected changes in suitable thermal habitat for modelled species for – relative to – for middle of the road (SSP
-., left) and fossil-fuelled development (SSP -., right) scenarios. Boxplots represent the distribution of suitable thermal habitat
projections from each of the climate models. Colours represent categories of species thermal bias index: red species are warm water, light blue
are cool water, and dark blue are cold water (see methods and Campana et al.,  for classifications). Note that x-axis is on a log scale, so a
species with a value of − would have % of the total projected suitable thermal habitat in – relative to –.

It is encouraging for Iceland that many commercially important
species are projected to see increases in suitable thermal habitat
within its EEZ. However, regional heterogeneity in suitable ther-
mal habitat changes may be of interest to managers and the fish-
ing industry. For example, the overall median increase in suitable
thermal habitat for cod, a flagship commercial species for Iceland,
is largely along the north and northeastern shelf; inshore waters,
particularly in the southeast and southern Westfjords, are predicted
to see decreases in suitable thermal habitat, with further decreases
in the north and northeast under SSP 5-8.5. Potential future de-
creased suitable thermal habitat for cod under some climate models
and scenarios may represent a major concern for the fishing indus-
try and Iceland’s economy, as cod contributes nearly half of ma-
rine products export value (Statistics Iceland, 2021). Meanwhile,
the projected increase in suitable thermal habitat for high-value
monkfish along the south and southwest coasts may represent a
commercial opportunity for those regions. The distribution of this
species around Iceland is thought to be particularly sensitive to tem-
perature changes, as its northern habitat edge is generally in Ice-

land’s southern waters (MFRI, 2021a). A sudden geographic expan-
sion around Iceland in the 2000s associated with warmer temper-
atures created a spike in local fisheries and investments in monk-
fish gillnets, but populations and distribution have since declined
and gillnetting operations have largely halted since 2016 (MFRI,
2021a). With projected temperature increases and suitable ther-
mal habitat, this fishery could see a resurgence. Conversely, pro-
jected nearshore declines in Atlantic wolffish suitable thermal habi-
tat could detrimentally impact the small-scale fishing sector, as this
species is primarily commercialized by smaller vessels in shallow
waters of the north and northwest (MFRI, 2021b). Thus, the eco-
nomic impacts of these projected suitable thermal habitat shifts may
unevenly affect different regions and sectors of the fishing indus-
try, as larger vessels with more technological capacity are less de-
pendent on proximity to fishing grounds than smaller vessels (Ed-
vardsson et al. 2018). Projections on this multidecadal scale could,
therefore, inform long-term planning not only for fishery devel-
opment but also broader infrastructure policy, as investment in
energy transmission and roads is critical for the competitiveness
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Figure 5. Maps demonstrating patterns of projected changes in future suitable thermal habitat, typified by cod (a), Norway pout (b), monkfish
(c), and lumpfish (d) in – relative to – under the middle of the road (SSP -., left) and fossil-fuelled development (SSP
-., right) scenarios. Habitat change is defined as the difference between the projected future and baseline suitable thermal habitat values.
Green regions indicate increases in suitable thermal habitat whereas brown regions indicate decreases in suitable thermal habitat.
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Figure 6. Projected distance (km) and direction (bearing, –◦) of shifts in the centroid of suitable thermal habitat distribution between
– and – under the middle of the road (SSP -., left) and fossil-fuelled development (SSP -., right) scenarios. Line
segment lengths span the minimum and maximum projected shifts in distance among the five climate models, with circles indicating the
median projection. Colours represent species thermal bias category (see Figure ). Triangles indicate the circular average value for the change in
bearing, grouped by thermal bias category.

of smaller and more remote processing facilities (Reynisson et al.
2012).

These projections could have cultural implications as well as eco-
nomic ones. Projected declines in inshore suitable thermal habitat
for lumpfish may be challenging for communities where the fishery
is a “cultural keystone:” although not one of the major commer-
cialized species in terms of volume or value, it plays an outsize role
in community heritage and local identity (Chambers, 2016). Starry
ray, while not commercialized, has historically been utilized when
brought in as bycatch and consumed as a festive delicacy on the
December 23rd Mass of St. Thorlak. Projected declines in suitable
thermal habitat throughout Iceland’s continental shelf may reduce
the availability of this species, contributing to ongoing declines in
this holiday tradition (MMR, 2020).

Further, these projected changes in fish species suitable thermal
habitat could have implications for food web structure and func-
tion within Iceland“s waters and in the broader North Atlantic.
Consistent with studies in the Barents Sea, these results indicate a
borealization of North Atlantic marine ecosystems, with increases
in abundance and northward expansions of warmer-water Atlantic
species relative to colder-water Arctic species (Fossheim et al., 2015;
Kortsch et al., 2015). Expansion of generalist predators such as
cod, haddock, and whiting could compound temperature-related
suitable habitat decreases for colder-water species through preda-
tion and competition. Their predation across wide environmental
niches, in combination with projected suitable thermal habitat de-
clines for several species thought to have important structural roles
as food web connectors such as eelpouts (Lycodes spp.), wolffishes
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(Anarhichus spp.), and polar cod (Boreogadus saiga), could con-
tribute to a more homogenous and less modular food web struc-
ture in Iceland and in more northern waters, which could be more
vulnerable to climate and other disturbances (Kortsch et al., 2015).
Incorporating further study of food web dynamics and predator–
prey interactions into species distribution projections would be key
for informing management decisions under warming conditions.
Predator–prey interactions have already been a dominant ecologi-
cal driver in Iceland’s waters: During the mid-1990s warming pe-
riod, increasing cod and other gadoid stocks along Iceland’s north-
ern coast is believed to have triggered the decline of a commercially
important shrimp fishery, as these fish preyed heavily on northern
shrimp and other species in closed fjord systems (Jónsdóttir et al.,
2019). More recently, mackerel predation has been associated with
declines in other warm-water species despite continued warming
(Valtýsson and Jónsson, 2018).

Overall, these results explore a range of potential outcomes for
species distribution based on future temperature change as a start-
ing point for discussion and planning. We focused on suitable ther-
mal habitat based on data availability and to build on previous work
predicting temperature effects (e.g. Campana et al. 2020), but in
interpreting these results it is important to note that temperature
alone is likely insufficient for making predictions of species abun-
dance and distribution (Hollowed et al., 2013; McHenry et al., 2019;
Husson et al., 2020). Indeed, low explanatory power of the models,
and for some species very low contribution of temprature variables
to deviance explained, suggest that additional variables would be
needed for better characterization of distribution for many species.
In a study of a similar suite of species in the Barents Sea, Husson et
al. (2020) found that while depth and temperature were important
limiting factors of habitat suitability, salinity was also a key predic-
tor. They further found that for many species, static variables in-
cluding sediment type were more influential in determining habitat
suitability. Mesoscale oceanographic dynamics such as the subpo-
lar gyre have also been demonstrated to influence fish abundance in
Greenland, and would likely affect Icelandic stocks as well (Post et
al., 2021). Exploring these additional variables, as well as potential
interactions between them, may improve model explanatory power
and predictive performance.

Species-specific behaviour and life-history traits are also key fac-
tors determining responses to environmental change (Hollowed et
al., 2013). While fitting these general models allowed us to explore
overall trends in a wider range of species, a more tailored, species-
specific approach would be useful for both for improving predic-
tions and interpreting how our suitable thermal habitat projections
may relate to actual distribution. The habitat indices we used here
as indicators of species life history or behaviour did not have strong
predictive power for change in projected suitable thermal habi-
tat or distance or direction of centroid shifts, so other life history
traits such as site fidelity and reproductive dynamics would be con-
siderations for further study (Hollowed et al., 2013). Additionally,
temperature may variably affect species at different life stages or
among subpopulations. Cod, for example, exhibit ontogenetic re-
gional shifts that follow the clockwise flow of currents around Ice-
land (Astthorsson et al., 2007), as well as behavioural ecotypes with
separate temperature and depth niches (Grabowski et al., 2011).
Considering life history traits also highlights caveats with the trawl
survey methods for characterizing the distribution of some species.
The demersal trawls are thought to inadequately cover the shal-
low distribution of plaice, for example (MFRI, 2021c). Plaice also
spawn during the early spring, concurrent with the spring surveys

(Solmundsson et al., 2005), which may result in aggregations that
could bias the survey. The surveys were designed to sample com-
mon commercial species, particularly cod, so projections for non-
commercialized or rarer species should be interpreted with more
caution.

Finally, management decisions are likely to be more significant
determinants of fish abundance and distribution than long-term
climate trends, particularly for the next few decades (Mullon et
al., 2016). Our suitable thermal habitat projections can provide an
idea of regions or species that could be important to develop or
to protect, but the future outcomes will depend largely on human
actions—both in terms of fisheries management and climate mit-
igation. This study demonstrates the value of using global climate
models to make spatially explicit projections of fish suitable ther-
mal habitat, which may serve as guideposts for long-term scenario
planning, investment in fisheries and infrastructure, and risk eval-
uation. For Iceland and other regions with available data to support
habitat modelling, such forward-looking studies could be a valuable
strategy for achieving climate-adaptive fisheries.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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